On semi-Krull domains

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Series over Generalized Krull Domains

We resolve an open problem in commutative algebra and Field Arithmetic, posed by Jarden – Let R be a generalized Krull domain. Is the ring R[[X]] of formal power series over R a generalized Krull domain? We show that the answer is negative.

متن کامل

On Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains

Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...

متن کامل

Strongly Semicontinuous Domains and Semi-FS Domains

We are mainly concerned with some special kinds of semicontinuous domains and relationships between them. New concepts of strongly semicontinuous domains, meet semicontinuous domains and semi-FS domains are introduced. It is shown that a dcpo L is strongly semicontinuous if and only if L is semicontinuous and meet semicontinuous. It is proved that semi-FS domains are strongly semicontinuous. So...

متن کامل

Krull - Tropical Hypersurfaces

The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization” we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1992

ISSN: 0021-8693

DOI: 10.1016/0021-8693(92)90104-t